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Abstract 
 

A major emphasis in software development is placed 
on identifying and reconciling architectural and design 
mismatches. Those mismatches happen during software 
development on two levels: while composing system 
components (e.g. COTS or in-house developed) and while 
reconciling view perspectives. Composing components 
into a system and ’composing’ views (e.g. diagrams) into 
a system model are often seen as being somewhat distinct 
aspects of software development, however, as this work 
shows, their approaches in detecting mismatches 
complement each other very well. In both cases, the 
composition process may result in mismatches that are 
caused by clashes between development artefacts. Our 
component-based integration approach is more high-level 
and can be used early on for risk assessment while little 
information is available. Model-based integration, on the 
other hand needs more information to start with but is 
more precise and can handle large amounts of redundant 
information. This paper describes both integration 
approaches and discusses their commonalties and 
differences. Both integration approaches are 
automateable and some tools support is already 
available. 

 
 

1. Introduction 

Nowadays, in order to be competitive, a developer’s 
usage of Commercial off the Shelf (COTS) packages has 
become standard, at times being an explicit requirement 
from the customer. The idea of simply plugging together 
various COTS packages and/or other existing/in-house 
developed parts (as described in the mega-programming 
principles [1]) is however often trivialized, just like the 
side effects which may occur by plugging or composing 
these packages together [2]. 

Likewise, design methodologies (e.g. the Unified 
Modeling Language - UML [3]) have undergone a similar 
development. In software development, we make use of 

models and views (e.g. UML diagrams) to cope with the 
complexity of software systems. Views enable different 
perspectives and therefore address different stakeholder 
concerns independently [4]. Just as in the case of (COTS) 
package composition, we find that it is the composition of 
these views which ultimately leads to non-trivial side 
effects. It is when those side effects clash that we are 
faced with mismatches. When we speak of mismatches we 
mean basically everything, from risks, to 
incompatibilities, to actual inconsistencies, and 
incompletenesses. 

A major emphasis in architecture-based software 
development is, therefore, placed on identifying and 
reconciling mismatches between and among different 
views as well as between different components (packages) 
- both being different sides of the same coin. One facet of 
our work has thus been to investigate ways of describing 
and identifying causes of architectural mismatches across 
(UML) views and components. We have found that 
addressing both concerns required different ways of 
dealing with them. Their primary distinction being that 
component-based integration is characterized by a lack of 
information (especially when we deal with COTS or 
legacy components), whereas in model-based integration 
it is the abundance of information which results in 
problems (involved complexity).  

However, it is the orthogonality of both integration 
approaches which complements both approaches because 
during software development we are (at times) confronted 
with both the lack of information and their abundance. 
Whenever we deal with new variables, changes, etc. we 
usually lack information and our ability of analyzing its 
impact seems limited. Conversely, once some aspect has 
been investigated, we are often confronted with 
information being spread in many different views (e.g. 
documents, to design models, to implementation). 
Therefore, effective mismatch detection needs to be able 
to deal with both types of scenarios.  

In the following sections, this work will discuss the 
causes of mismatches and will also describe two mismatch 
detection approaches covering both integration types. We 
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will further illustrate with an example, how these 
approaches complement each other. 
 

2. Component and Model Clashes 

Before describing both integration approaches in more 
detail, we will briefly compare the characteristics of 
component-based integration and model-based 
integration. We mentioned before that these approaches 
are quite different, however, their results are 
complementary. Both approaches identify clashes of some 
sort which in turn yield mismatches. Corresponding with 
our integration approaches, we are confronted with two 
types of clashes/mismatches: 

1. Component-based integration yields component 
feature clashes/mismatches 

2. Model-based integration yields model constraint and 
rule clashes/mismatches 

 
2.1. Component Feature Clashes 

When composing systems, many potential mismatches 
can be detected by analyzing their various component 
choices and their intrinsic features. Mismatches often 
occur because the subsystems have different 
characteristics for some particular feature. For instance, 
one subsystem is multi-threaded and the other one is not 
creating the possibility of synchronization problems when 
accessing some shared data. Mismatches may also occur 
because subsystems have the same characteristics for 
some particular feature. For instance, if two subsystems 
are using a central control unit, each of which believes it 
is the only one, then there may be clashes when trying to 
combine them, since both control units will assume they 
have absolute control on sequencing (note that in case of 
COTS packages, the same set of features can be used 
because they describe systems in terms of their 
interactions with the outside world). Component features 
can be derived through observation and assumptions of 
their external behavior (black box analysis) without 
knowing their internal workings. This approach has a 
number of advantages: 

• mismatches can be identified early on (early risk 
assessment)  

• little component knowledge is required; can even 
handle incomplete component specifications  

• is useful in assessing in-house components, COTS 
(Commercial-off-the-shelf) products and legacy 
systems 

 

2.2. Model Constraint and Rule Clashes 

When dealing with models and views we find it is the 
redundancy (abundance) of information which is the 
major driver for mismatches. Redundancy happens 

because views try to provide complete pictures from 
different perspectives, as such modeling information is 
reused between and within views (e.g. especially in 
diagrammatic views). On top of that, views are used 
independently, concurrently, rarely share modeling 
information and are subject to different audiences 
(interpretations). All this implies that information about a 
system must be entered multiple times and must be kept 
consistent manually.  

Mismatches in models deal thereby mainly with view 
inconsistencies and incompletenesses. To identify them 
we use a view integration framework that enables the 
system model to be represented in the form of constraints 
and mismatches in the form of rules. Both, constraints and 
rules can be derived through analysis and interpretation of 
the internal workings (white box analysis) of the system 
model (architecture, design, and implementation). This 
approach has a number of advantages: 

• more precise and reliable mismatch prediction 
• useful in ensuring the conceptual integrity of the 

system model and its views 
• can be complemented by mismatch resolution 

approaches and options 

 
3.  Integration Approaches and Clashes 

Both mismatch identification approaches have merits 
and problems. None is generally superior to the other. 
Instead, their respective advantages and disadvantages 
complement each other very well. Both approaches should 
be applied to any given development project. Mismatches 
can be distinguished as follows: 

• Component-based integration makes pessimistic 
assumptions about the existence of mismatches. 
Clashes identified are therefore often risk indicators 
with little or no proof of the actual existence of 
mismatches. This is a result of the lack of 
information. 

• Model-based integration, on the other hand, takes a 
more optimistic view. Since the system model 
contains abundant information, raising mismatches on 
a mere ’hunch’ would result in a tremendous amount 
of feedback to the user. Thus, model-based 
integration tries to combine information from 
different views to allow a more precise reasoning. 

This distinction does, however, not imply that 
mismatches identified through model-based integration 
are always true. Both integration approaches rely on 
heuristics in reasoning about mismatches and both 
approaches have ambiguous information to start with. 
Thus, both integration approaches should be used with 
that thought in mind and results derived from them should 
not be trusted blindly. 
 



4. Example of a Product Ordering System 

To complement our discussion about the strengths and 
weaknesses of both mismatch detection approaches, we 
will use the example of a Product Ordering System (see 
also [5]) throughout this paper. This system extends an 
existing COTS package, the Inventory System, by 
providing additional order capture and order processing 
services (see Figure 1). These additions are implemented 
in Order Framework and its user interface is provided 
through the Order UI component. 

The new Product Ordering System sits on top of the 
existing COTS software. Both the existing Inventory 
System and the new services provided by the Order 
Framework make use of the same database (the Order 
Repository) which is yet another COTS package. To 
ensure a consistent looking user interface (GUI), the new 
system also replaces the current user interface of the 
Inventory System. As the paper unfolds, we will reveal 
more information about that system. 
 

5. Mismatch Identification Approaches 

The following section will discuss both mismatch 
detection approaches in more detail. For more information 
about Component-Based Integration, please refer to [6] 
and [7]. For more information about Model-Based 
Integration, please refer to [8]. 

 

5.1. Component-Based Integration 
Our component-based integration approach flags 

architectural mismatches based on descriptions of the 
various components to be used and the connections 

between them. For describing 
components we use a set of 
conceptual features rather than 
only architectural style 
information. This was a conscious 
decision based on the fact that the 
same style name may mean 
different things to different 
people, styles usually fix some 
aspects of their elements leaving 
others undefined [9], and 
moreover in large scale systems 
quite often a pure style does not 
suffice, forcing various 
adaptations for the specific task at 
hand. We also provide a finite set 
of connectors for the composition. 

The set of conceptual features 
we use for describing components 
is: backtracking, component 
priorities, concurrency, control 
unit, distribution, dynamism, 
encapsulation, layering, 

preemption, reconfiguration, reentrance, response time, 
supported data transfers, and triggering capabilities. A 
precise definition for these features and the possible 
values they may take will not be given here because of 
space limitations, but they may be found elsewhere [10]. 
The connectors supported are: call, spawn, shared data, 
shared repository, data connector, trigger, and shared 
resources. 

While analyzing a given situation the set of component 
descriptions and their expected connections are used to 
traverse a set of rules and determine the kind of 
mismatches that are present1.  

When using our Architect’s Automated Assistant 
(AAA) tool, components may be described based on some 
pre-defined architectural styles and then refined, or simply 
based on their feature set. Additionally, some of their 
features may be left unconstrained, allowing for the 
analysis of partial descriptions. Since descriptions given 
to AAA are extremely high-level and at times incomplete, 
the output provided is a list of potential mismatches. This 
list is to be used by architects for further analysis as some 
potential risk sources. 

In our Product Ordering System example, the input 
used by AAA was the one provided in Table 1 for the 
components, plus the connecting information depicted in 
Figure 1. The results obtained will be discussed shortly. 

                                                 
1 Though we have a model using the Z formal 

language that can pinpoint exact mismatches based on precise 
descriptions [6], in this paper we will only be discussing the 
AAA tool, which requires less information and provides less 
accurate but much faster and cheaper feedback. 
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Figure 1: Overview of Product Ordering System using UML Packages 



5.2. Model-Based Integration 
To address the view mismatch problem, we have 

investigated ways of describing and identifying the causes 
of architectural mismatches across UML views. To this 
end, we have devised and applied a view integration 
framework accompanied by a set of activities and 
techniques for identifying mismatches in a more 
automated fashion: mapping, transformation, 
differentiation (see Figure 2) [8]. 

The system model represents the model base (e.g. 
UML model) of the designed software system. Software 
developers use views to add new information to the 
system model and to modify existing ones (view 
synthesis). Interacting with both the system model and the 
view synthesis is the view analysis activity. As soon as 
new information is added, it can be validated against the 
system model to ensure its conceptual integrity. 

This approach exploits redundancy between views (the 
very causes of view mismatches). For instance, view A 
contains information about view B, consequently this 
information can be seen as a constraint on B. The view 
integration framework is used to validate these constraints 
and, thereby, the consistency across views. Since there is 
more to view integration than constraints and consistency 
rules, our view integration framework also provides an 
environment where we can apply those rules in a 
meaningful way. Therefore, we see view integration as a 
natural extension to mere view representation. The former 
extends the latter not only by rules and constraints but also 
by defining what information can be exchanged and how 
it can be exchanged. Only after the what and how have 
been established, can inconsistencies be identified and 
resolved automatically. 

 

• Mapping: Identifies related 
pieces of information and thereby 
describes what information is 
overlapping. Mapping is often 
done manually through naming 
dictionaries or traceability 
matrices. We can automate 
mapping through the use of 
patterns, interfaces, similar usage, 
trace observations, and others. 

• Transformation: Extracts and 
manipulates model elements of 
views in such a manner that they 

View
Synthesis

(graphical and textual)

Differentiation
(Comparison)
identify differences
between model, rules,
and constraints

View Analysis

Transformation
(Extraction)
- through abstraction
- through consolidation
- through translation

Mapping
(Cross-Referencing)
- through names
- through patterns
- through association

System Model
e.g. UML model

Figure 2: Model-Based View Integration Framework 

Table 1: Product Ordering System, Subsystems, and their Conceptual Features 

Subsystem Order UI Inventory UI Order Framework Inventory System 

Pre-defined Style Event-based Event-based Main-Subroutine Database-centric 
Background Information in-house in-house in-house COTS 
Backtracking no no no yes 
Component priorities no no no unknown 
Concurrency yes yes no yes 
Control unit central central none central 
Distribution single-node single-node single node single node 
Dynamism 
Initiating: 
Terminating: 

 
yes 
yes 

 
yes 
yes 

 
no 
no 

 
unknown 
unknown 

Encapsulation yes yes yes unknown 
Layering 
Data: 
Control: 

 
no 
no 

 
no 
no 

 
no 
yes 

 
unknown 
unknown 

Preemption no no no unknown 
Reconfiguration off-line off-line off-line off-line 
Reentrance no no no yes 
Response time unbounded unbounded unbounded bounded 
Supported Data Transfers 
Shared Variable: 
Explicit Data Connector: 
Shard Repositories: 

 
no 
yes 
no 

 
no 
yes 
no 

 
yes 
no 
no 

 
no 

unknown 
yes 

Triggering capability yes yes no yes 
*** Items in Italics are refinements of the pre-defined styles. Their default value would be unknown otherwise. 



(or pieces of them) can be interpreted and used in 
other views (how can information be exchanged). 
Transformation can be categorized into basically 
three dimensions: abstraction (or refinement of 
views), consolidation (generic vs. specific) and 
translation (conversion of information between 
different types of views).  

• Differentiation: Traverses the model to identify 
(potential) mismatches within its elements. (Potential) 
mismatches can automatically be identified through 
either the use of rules and constraints or direct 
(graph) comparison. Mismatch identification rules 
can frequently be complemented by mismatch 
resolution rules. Automated differentiation is strongly 
dependent on transformation and mapping. 

To date, we have applied our view integration 
framework on various UML views such as class and 
object diagrams, sequence diagrams, and state diagrams. 
Our framework was also used in connection with 
architectural models and styles (e.g. C2, Pipe-and-Filter, 
Layered, etc.) as well as design patterns. 

 

6. Identifying Mismatches 

6.1. Component Feature Clashes 
Currently, all the information available about our 

system is rather high-level. At this point in the 
development process we have no detailed architecture or 
design information available, however, as we had shown 
in Table 1, we have some clear understandings on what 
the conceptual features of the components look like. We 
also have the description of the interactions between the 

components, as seen in Figure 1 (e.g. Order Framework 
calls and shares repository with Inventory System). Using 
that information we can now perform a preliminary 
analysis on what potential mismatches (risks) may occur 
when building that system. Table 2 summarizes the results 
of that analysis. The table shows an excerpt of the 
mismatches identified by the Architect’s Automated 
Assistant (AAA) tool developed at USC [6].  

Since the internal workings of our components are 
largely unknown, many of these mismatches are 
hypothesized. For instance, the mismatch that a node 
resource is overused is based on the observation that more 
than one component is using the same resource (a PC in 
this case). Thus, in this context the list presented in Table 
2 should be seen more as a risk list. Nevertheless, special 
attention should be placed on that lists (as well as other 
risk lists) from this moment on. In case of more severe 
items, an initial exploration or even prototyping may be 
necessary to ensure that the project is still doable. For 
instance, the ninth mismatch sharing data with some 
components that may later backtrack is a serious risk. 
Here we need to explore whether the current database is 
able to deal with issues such as distinguishing different 
sources of input or supporting locking mechanisms. 

 

6.2. Model Constraint and Rule Clashes 
Model-based integration takes a very different 

approach in identifying mismatches. Here, we try to 
actually analyze the solution model. For instance, when 
we take Figure 1, we can see that this figure imposes a 
number of constraints on our system. For instance, it states 
that only Inventory UI and Order Framework are allowed 

Table 2: Excerpt of the List of Component Features Mismatches. 

1. A layering constraint is violated. Bridging connector may ignore existing layering constraints. Violating subsystems: Order UI 
and Order Framework (on control layer); Inventory UI and Inventory System (control layering unknown) (on control layer); 
Order Framework and Inventory System (on control layer) 

2. Different sets of recognized events are used by two subsystems that permit triggers. A trigger may not be recognized by 
some subsystem that should. Violating subsystems: Order UI, Inventory UI, Inventory System 

3. A (triggered) spawn is made into or out of a subsystem which originally forbade them. May cause synchronization problems, 
as well as resources contention. Violating subsystems: Inventory UI and Inventory System (threads initiating unknown); Order 
Framework and Inventory System 

4. A remote connector is extended into or out of a non-distributed subsystem. The subsystem(s) originally non-distributed 
cannot handle delays and/or errors occurred due to some distributed communication event. Violating subsystems: Inventory UI 
and Inventory System 

5. A node resource is overused. Resource overusage (memory and disk space). Violating subsystems: Inventory UI, Order 
Framework, Order UI, Inventory System 

6. (Triggered) Call/Spawn to a private method. Method not accessible to the caller. Violating subsystems: Inventory UI and 
Inventory System (encapsulation unknown); Order Framework and Inventory System (encapsulation unknown) 

7. More than one central control unit exists. All central control units assume they have absolute control on the execution 
sequencing. Violating subsystems: Order UI, Inventory UI, Inventory System 

8. (Triggered) Call to a non-reentrant component. Component may already be running. Violating subsystems: Order UI and 
Inventory UI; Order UI and Order Framework 

9. Sharing data with some component(s) that may later backtrack. Backtracking may cause undesired side effects on the overall 
composed system state. Violating subsystems: Order Framework and Inventory System 

10. Sharing or transferring data with differing underlying representations. Communications concerning the specific data may 
not occur properly. Violating subsystems: Order Framework and Inventory System 



to talk to Inventory System, or that both the Order 
Framework and Inventory System may access the Order 
Repository (database) via the Network. These constraints 
can now be expressed more formally: 
Design[Order Capture UI depends-on Order Framework] 
Design[Order Processing UI depends-on Order Framework] 
Design[Inventory UI depends-on Inventory System] 
Design[Order Framework depends-on Inventory System] 
Design[Order Framework depends-on Network] 
Design[Inventory System depends-on Network] 
Design[Network depends-on Order Repository] 

Based on this list, we can use these constraints to 
ensure consistency with lower-level design views (its 
realization) as well as with corresponding higher level 
views (e.g. architecture). Consider, for example, Table 3 
which represents an architectural view of our proposed 
system. We see that, although the Product Ordering 
System consists of components of various styles, the 
overall system should follow a layered style (the items in 
parenthesis are subcomponents). Like before, we can 
express constraints imposed by the architecture in a more 
formal way: 
Architecture[User Interface depends-on Order Framework] 
Architecture[Order Framework depends-on Inventory Sys.] 
Architecture[Inventory System depends-on Network] 
Architecture[Network depends-on Order Repository] 

The translations of the above architecture and design 
views correspond to the Transformation activity we 
presented in the previous section. The above steps, which 
are rather trivial in this case, can easily be automated. 
What is not trivial, is how to establish mappings. In this 
example we need a mapping to describe how to relate 
architectural elements to design elements. Since they are 
not using the same names, mapping is more complex. It is 
however out of the scope to show automated mapping 
techniques here. If interested, please refer to [8] where 
techniques are shown for automatically performing both 
Mapping and Transformation on less trivial examples. 
Thus, for simplicity, let us assume that the mapping was 
done manually. This information can then again be 
transformed and represented in a more formal way: 
Design[Order Capture UI] maps-to Architecture[User Interface] 
Design[Order Processing UI] maps-to Architecture[User Int.] 
Design[Inventory UI] maps-to Architecture[User Interface] 
Design[Order Framework] maps-to Architecture[Order Framew.] 
Design[Inventory System] maps-to Architecture[Inventory Sys.] 
Design[Network] maps-to Architecture[Network]  

Design[Order Repository] maps-to Architecture[Order Rep.] 

Having established a mapping as well as having 
transformed both views into a common representation 
model, identifying mismatches between them is 
straightforward. The only item missing are mismatch rules 
for the Differentiation activity: 
For all [Architectural View Constraints]  
         Exist [Design View Constraint] 
         Otherwise Raise Completeness Mismatch 
For all [Design View Constraints] 
         Exist [Architectural View Constraint] 
         Otherwise Raise Consistency Mismatch 

The above notation is simplified for the benefit of 
readability. The mismatch analysis is twofold: 1) for each 
constraint imposed by the architecture, find at least one 
instance in the design which reflects this constraint 
(completeness issue) and 2) for each constraint in the 
design, verify that it does not violate any architectural 
constraint (inconsistency issue). For instance, in the first 
case, the architecture imposes a dependency from User 
Interface to Order Framework (see Table 3). The User 
Interface is represented by two subcomponents: Order UI 
and Inventory UI. Thus, we need to verify that there is at 
least one dependency from either Order UI or Inventory 
UI to the Order Framework. This dependency exists and, 
thus, there is no mismatch. An example of the second case 
is the dependency from Inventory UI to Inventory System 
(in Figure 1) in the design view. Here we need to verify 
whether this dependency violates any architectural 
constraints. Since we cannot find a dependency from User 
Interface (the correspondence of Inventory UI) to 
Inventory System we have identified a layering mismatch. 

The mismatch identified here corresponds to the 
layering constraint violation indicated by AAA. The first 
risk item in Table 2 indicated that the interaction of the 
components may not conform to some layering constraint. 
Through model-based integration we are actually able to 
analyze this risk in more detail and we find that it was 
indeed correct. This shows that risks identified through 
AAA are a nice starting point for identifying model 
mismatches later on. This also implies that many AAA 
mismatches can be either confirmed or eliminated through 
model-based integration. 

The above example shows a rather trivial case. 
However, the view integration framework presented in 
this paper can handle more complex scenarios and at this 
point incorporates a number of techniques for automated 
mismatch identification. Note that none of the integration 
techniques must yield correct results nor may it be 
assumed that all possibilities are captured by them. 
Human interaction will always be required. Nevertheless, 
many pieces can be automated and this automation can 
save substantial human effort. 

It is however out of the scope of this work to go into 
much more detail here. We will therefore only present one 
example on how to automate class diagram abstraction 

Table 3: Layered Architecture describes System 
Product Ordering System 

User Interface (Order UI, Inventory UI) 
Order Framework (Customer, Payment, Order, 

OrderLine, Reorder) 
Inventory System 
Network (LAN) 

Order Repository 



(transformation). Figure 3 shows two further refinements 
of the Order Framework. Although, we make use of the 
same names it is clear that Mapping alone is not sufficient 
in identifying mismatches between both views. For 
example, we see that Payment is part of Customer on the 
upper half of Figure 3, however, that relationship is more 
complex in the lower half. In order to verify that both 
figures describe relationships the same way, we can use 
the concept of Rose/Architect [11]. 

Rose/Architect (RA) identifies patterns of groups of 
three classes and replaces them with simpler patterns 
using transitive relationships. In class diagrams, a 
transitive relationship describes the relationship between 
classes that are not directly connected. A relationship 
may, however, exist through other classes (e.g. helper 
classes) which form a bridge between them (e.g. in case of 
our example Payment and Customer are not directly 
connected but a relationship is still given through the 
helper classes Transaction and Account).  

Figure 4 shows the Rose/Architect refinement steps for 
the case of the Payment to Customer  relationship of our 
layer 2 design view (Figure 3). After applying two rules 
(rules 4 and 17 respectively) we get a simplified pattern of 
two classes and a dependency relationship between them. 
If this is also done for the other classes we can 
automatically generate new constraints. For instance, from 

Layer 1 in Figure 3 we could 
automatically derive the constraint that 
Payment is part of Customer. After 
abstracting Layer 2, we would derive 
another constraint saying that Payment 
is dependent on Customer. This 
discrepancy is a strong indication of a 
mismatch. Using Rose/Architect on 
other parts of the layer 2 diagram would 
also indicate a mismatch between Order 
and OrderLine. This abstraction process 
is fully tool supported. 

As above examples have shown, 
both integration approaches have 
advantages and disadvantages, however, 
together they complement each other 
very well. Not all mismatches identified 
through component-based integration 
can be validated through model-based 
integration. This suggests that other 
view integration or risk handling 
techniques are necessary to bridge the 
gap.  

Whereas component-based 
integration depends strongly on existing 
architectural features information, the 
model-based integration approach is 
able to also handle domain specific 
constraints and rules on an ad-hoc 

basis. This is possible because the latter uses constraints 
and rules that can be both view specific (e.g. layer may 
not be skipped) and domain specific (e.g. Payment is part 
of Customer). 
 

7. Related Work 

The lack of component and model integration is not a 
new discovery. Many model descriptions talk about the 
need of keeping the views consistent. Sometimes, process 
models provide additional guidelines on what tasks one 
can do to improve the conceptual integrity of 
architectures. For instance, a case study in using the 
WinWin Spiral Model [12] suggests using Architecture 
Review Boards [13] after the LCO (life-cycle objectives) 
and LCA (life-cycle architecture) stages to verify and 
validate the integrity of the analysis and design. 

Sage and Lynch [14] stress “the important role that 
architecture plays in system integration.” They present the 
need for three major views: enterprise view, systems 
engineering and management view, and technology 
implementation view – and they stress to ensure 
consistency among these views. Nuseibeh [15] wrote that 
“inconsistency is an inevitable part of a complex, 
incremental software development process” and that “the 
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incremental development of software systems involves the 
detection and handling of inconsistencies.”  

Perry and Wolf [16] realized the importance of 
software architectures early on and they state as one of the 
four major benefits of architectures that they are “the basis 
for dependency and consistency analysis.” Shaw and 
Garlan [17] describe architecture very provocatively as 
being “a substantial folklore of system design, with little 
consistency or precision.” They further state that 
“software architecture found its roots in diagrams and 
informal prose. Unfortunately, diagrams and descriptions 
are highly ambiguous.” 

These references, and many more, talk about the need 
for (or lack of) integration. Nevertheless, they often do not 
describe the involved activities in detail. On the other 
hand, techniques that are sometimes suggested are often 
only aimed at making people talk to each other. (e.g. 
Architecture Review Board or Inspection). Although these 
techniques may yield very effective results, the actual 
activities of identifying and resolving defects are still done 
manually. 
 

8. Conclusion 

This paper discussed two integration variations - 
component-based integration and model-based 
integration. We have shown the advantages and 
disadvantages of each approach and illustrated their usage 
on an example. 

The component-based integration effort is more high-
level and may be used early on to identify potential 
mismatches (risk mitigation). Identified mismatches may 
be less trustworthy than the ones identified through 
model-based analysis, however, the component-based 
approach is able to deliver results with fairly little, even 
incomplete, specifications. Model-based integration on the 
other hand, works poorly in such an environment. Instead 
it needs fairly detailed and sufficiently complete 
specifications. However, it detects much more precise and 
trustworthy mismatches and can handle large amounts of 
redundant information. New information added to the 
model may be validated right away and, in case of 
mismatches, resolution options may often be provided as 
well. It is these orthogonal characteristics that make both 
approaches highly complementary. Both integration 
approaches can be used (and should be used) together. 

Currently, component-based integration has a strong 
tool support (AAA tool). Model-based integration, has 
some tool support, such as Rose/Architect for abstraction, 
UML/Analyzer for transformation, and OCL checker for 
constraint and rule verification. These tools are, however, 
only weakly interconnected at this point and more tool 
support is needed. 
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