

Automatically Detecting Mismatches during
Component-Based and Model-Based Development

 Alexander Egyed Cristina Gacek
 Center for Software Engineering Fraunhofer IESE
 University of Southern California Sauerwiesen 6
 Los Angeles, CA 90089-0781, USA 67661 Kaiserslautern, Germany
 aegyed@sunset.usc.edu cristina.gacek@iese.fhg.de

Abstract

A major emphasis in software development is placed
on identifying and reconciling architectural and design
mismatches. Those mismatches happen during software
development on two levels: while composing system
components (e.g. COTS or in-house developed) and while
reconciling view perspectives. Composing components
into a system and ’composing’ views (e.g. diagrams) into
a system model are often seen as being somewhat distinct
aspects of software development, however, as this work
shows, their approaches in detecting mismatches
complement each other very well. In both cases, the
composition process may result in mismatches that are
caused by clashes between development artefacts. Our
component-based integration approach is more high-level
and can be used early on for risk assessment while little
information is available. Model-based integration, on the
other hand needs more information to start with but is
more precise and can handle large amounts of redundant
information. This paper describes both integration
approaches and discusses their commonalties and
differences. Both integration approaches are
automateable and some tools support is already
available.

1. Introduction

Nowadays, in order to be competitive, a developer’s
usage of Commercial off the Shelf (COTS) packages has
become standard, at times being an explicit requirement
from the customer. The idea of simply plugging together
various COTS packages and/or other existing/in-house
developed parts (as described in the mega-programming
principles [1]) is however often trivialized, just like the
side effects which may occur by plugging or composing
these packages together [2].

Likewise, design methodologies (e.g. the Unified
Modeling Language - UML [3]) have undergone a similar
development. In software development, we make use of

models and views (e.g. UML diagrams) to cope with the
complexity of software systems. Views enable different
perspectives and therefore address different stakeholder
concerns independently [4]. Just as in the case of (COTS)
package composition, we find that it is the composition of
these views which ultimately leads to non-trivial side
effects. It is when those side effects clash that we are
faced with mismatches. When we speak of mismatches we
mean basically everything, from risks, to
incompatibilities, to actual inconsistencies, and
incompletenesses.

A major emphasis in architecture-based software
development is, therefore, placed on identifying and
reconciling mismatches between and among different
views as well as between different components (packages)
- both being different sides of the same coin. One facet of
our work has thus been to investigate ways of describing
and identifying causes of architectural mismatches across
(UML) views and components. We have found that
addressing both concerns required different ways of
dealing with them. Their primary distinction being that
component-based integration is characterized by a lack of
information (especially when we deal with COTS or
legacy components), whereas in model-based integration
it is the abundance of information which results in
problems (involved complexity).

However, it is the orthogonality of both integration
approaches which complements both approaches because
during software development we are (at times) confronted
with both the lack of information and their abundance.
Whenever we deal with new variables, changes, etc. we
usually lack information and our ability of analyzing its
impact seems limited. Conversely, once some aspect has
been investigated, we are often confronted with
information being spread in many different views (e.g.
documents, to design models, to implementation).
Therefore, effective mismatch detection needs to be able
to deal with both types of scenarios.

In the following sections, this work will discuss the
causes of mismatches and will also describe two mismatch
detection approaches covering both integration types. We

* This research is sponsored by DARPA through Rome Laboratory (contract F30602-94-C-0195) and by the Affiliates of the USC-CSE

Published in Proceedings of the 14th IEEE International Conference on Automated Software Engineering, Cocoa
Beach, Florida, October 1999, pp. 191-198

will further illustrate with an example, how these
approaches complement each other.

2. Component and Model Clashes

Before describing both integration approaches in more
detail, we will briefly compare the characteristics of
component-based integration and model-based
integration. We mentioned before that these approaches
are quite different, however, their results are
complementary. Both approaches identify clashes of some
sort which in turn yield mismatches. Corresponding with
our integration approaches, we are confronted with two
types of clashes/mismatches:

1. Component-based integration yields component
feature clashes/mismatches

2. Model-based integration yields model constraint and
rule clashes/mismatches

2.1. Component Feature Clashes

When composing systems, many potential mismatches
can be detected by analyzing their various component
choices and their intrinsic features. Mismatches often
occur because the subsystems have different
characteristics for some particular feature. For instance,
one subsystem is multi-threaded and the other one is not
creating the possibility of synchronization problems when
accessing some shared data. Mismatches may also occur
because subsystems have the same characteristics for
some particular feature. For instance, if two subsystems
are using a central control unit, each of which believes it
is the only one, then there may be clashes when trying to
combine them, since both control units will assume they
have absolute control on sequencing (note that in case of
COTS packages, the same set of features can be used
because they describe systems in terms of their
interactions with the outside world). Component features
can be derived through observation and assumptions of
their external behavior (black box analysis) without
knowing their internal workings. This approach has a
number of advantages:

• mismatches can be identified early on (early risk
assessment)

• little component knowledge is required; can even
handle incomplete component specifications

• is useful in assessing in-house components, COTS
(Commercial-off-the-shelf) products and legacy
systems

2.2. Model Constraint and Rule Clashes

When dealing with models and views we find it is the
redundancy (abundance) of information which is the
major driver for mismatches. Redundancy happens

because views try to provide complete pictures from
different perspectives, as such modeling information is
reused between and within views (e.g. especially in
diagrammatic views). On top of that, views are used
independently, concurrently, rarely share modeling
information and are subject to different audiences
(interpretations). All this implies that information about a
system must be entered multiple times and must be kept
consistent manually.

Mismatches in models deal thereby mainly with view
inconsistencies and incompletenesses. To identify them
we use a view integration framework that enables the
system model to be represented in the form of constraints
and mismatches in the form of rules. Both, constraints and
rules can be derived through analysis and interpretation of
the internal workings (white box analysis) of the system
model (architecture, design, and implementation). This
approach has a number of advantages:

• more precise and reliable mismatch prediction
• useful in ensuring the conceptual integrity of the

system model and its views
• can be complemented by mismatch resolution

approaches and options

3. Integration Approaches and Clashes

Both mismatch identification approaches have merits
and problems. None is generally superior to the other.
Instead, their respective advantages and disadvantages
complement each other very well. Both approaches should
be applied to any given development project. Mismatches
can be distinguished as follows:

• Component-based integration makes pessimistic
assumptions about the existence of mismatches.
Clashes identified are therefore often risk indicators
with little or no proof of the actual existence of
mismatches. This is a result of the lack of
information.

• Model-based integration, on the other hand, takes a
more optimistic view. Since the system model
contains abundant information, raising mismatches on
a mere ’hunch’ would result in a tremendous amount
of feedback to the user. Thus, model-based
integration tries to combine information from
different views to allow a more precise reasoning.

This distinction does, however, not imply that
mismatches identified through model-based integration
are always true. Both integration approaches rely on
heuristics in reasoning about mismatches and both
approaches have ambiguous information to start with.
Thus, both integration approaches should be used with
that thought in mind and results derived from them should
not be trusted blindly.

4. Example of a Product Ordering System

To complement our discussion about the strengths and
weaknesses of both mismatch detection approaches, we
will use the example of a Product Ordering System (see
also [5]) throughout this paper. This system extends an
existing COTS package, the Inventory System, by
providing additional order capture and order processing
services (see Figure 1). These additions are implemented
in Order Framework and its user interface is provided
through the Order UI component.

The new Product Ordering System sits on top of the
existing COTS software. Both the existing Inventory
System and the new services provided by the Order
Framework make use of the same database (the Order
Repository) which is yet another COTS package. To
ensure a consistent looking user interface (GUI), the new
system also replaces the current user interface of the
Inventory System. As the paper unfolds, we will reveal
more information about that system.

5. Mismatch Identification Approaches

The following section will discuss both mismatch
detection approaches in more detail. For more information
about Component-Based Integration, please refer to [6]
and [7]. For more information about Model-Based
Integration, please refer to [8].

5.1. Component-Based Integration
Our component-based integration approach flags

architectural mismatches based on descriptions of the
various components to be used and the connections

between them. For describing
components we use a set of
conceptual features rather than
only architectural style
information. This was a conscious
decision based on the fact that the
same style name may mean
different things to different
people, styles usually fix some
aspects of their elements leaving
others undefined [9], and
moreover in large scale systems
quite often a pure style does not
suffice, forcing various
adaptations for the specific task at
hand. We also provide a finite set
of connectors for the composition.

The set of conceptual features
we use for describing components
is: backtracking, component
priorities, concurrency, control
unit, distribution, dynamism,
encapsulation, layering,

preemption, reconfiguration, reentrance, response time,
supported data transfers, and triggering capabilities. A
precise definition for these features and the possible
values they may take will not be given here because of
space limitations, but they may be found elsewhere [10].
The connectors supported are: call, spawn, shared data,
shared repository, data connector, trigger, and shared
resources.

While analyzing a given situation the set of component
descriptions and their expected connections are used to
traverse a set of rules and determine the kind of
mismatches that are present1.

When using our Architect’s Automated Assistant
(AAA) tool, components may be described based on some
pre-defined architectural styles and then refined, or simply
based on their feature set. Additionally, some of their
features may be left unconstrained, allowing for the
analysis of partial descriptions. Since descriptions given
to AAA are extremely high-level and at times incomplete,
the output provided is a list of potential mismatches. This
list is to be used by architects for further analysis as some
potential risk sources.

In our Product Ordering System example, the input
used by AAA was the one provided in Table 1 for the
components, plus the connecting information depicted in
Figure 1. The results obtained will be discussed shortly.

1 Though we have a model using the Z formal

language that can pinpoint exact mismatches based on precise
descriptions [6], in this paper we will only be discussing the
AAA tool, which requires less information and provides less
accurate but much faster and cheaper feedback.

Network (LAN)

Order
Repository

<<COTS>>

PC Client

UNIX
Server

User Interface

Order UI

Inventory UI

Order
Framework

<<calls>>

<<calls>><<calls>>

<<calls>>

<<shares repository>>
<<spawns>>

<<spawns>>

<<spawns>>

Inventory
System

<<COTS>>

Figure 1: Overview of Product Ordering System using UML Packages

5.2. Model-Based Integration
To address the view mismatch problem, we have

investigated ways of describing and identifying the causes
of architectural mismatches across UML views. To this
end, we have devised and applied a view integration
framework accompanied by a set of activities and
techniques for identifying mismatches in a more
automated fashion: mapping, transformation,
differentiation (see Figure 2) [8].

The system model represents the model base (e.g.
UML model) of the designed software system. Software
developers use views to add new information to the
system model and to modify existing ones (view
synthesis). Interacting with both the system model and the
view synthesis is the view analysis activity. As soon as
new information is added, it can be validated against the
system model to ensure its conceptual integrity.

This approach exploits redundancy between views (the
very causes of view mismatches). For instance, view A
contains information about view B, consequently this
information can be seen as a constraint on B. The view
integration framework is used to validate these constraints
and, thereby, the consistency across views. Since there is
more to view integration than constraints and consistency
rules, our view integration framework also provides an
environment where we can apply those rules in a
meaningful way. Therefore, we see view integration as a
natural extension to mere view representation. The former
extends the latter not only by rules and constraints but also
by defining what information can be exchanged and how
it can be exchanged. Only after the what and how have
been established, can inconsistencies be identified and
resolved automatically.

• Mapping: Identifies related
pieces of information and thereby
describes what information is
overlapping. Mapping is often
done manually through naming
dictionaries or traceability
matrices. We can automate
mapping through the use of
patterns, interfaces, similar usage,
trace observations, and others.

• Transformation: Extracts and
manipulates model elements of
views in such a manner that they

View
Synthesis

(graphical and textual)

Differentiation
(Comparison)
identify differences
between model, rules,
and constraints

View Analysis

Transformation
(Extraction)
- through abstraction
- through consolidation
- through translation

Mapping
(Cross-Referencing)
- through names
- through patterns
- through association

System Model
e.g. UML model

Figure 2: Model-Based View Integration Framework

Table 1: Product Ordering System, Subsystems, and their Conceptual Features

Subsystem Order UI Inventory UI Order Framework Inventory System

Pre-defined Style Event-based Event-based Main-Subroutine Database-centric
Background Information in-house in-house in-house COTS
Backtracking no no no yes
Component priorities no no no unknown
Concurrency yes yes no yes
Control unit central central none central
Distribution single-node single-node single node single node
Dynamism
Initiating:
Terminating:

yes
yes

yes
yes

no
no

unknown
unknown

Encapsulation yes yes yes unknown
Layering
Data:
Control:

no
no

no
no

no
yes

unknown
unknown

Preemption no no no unknown
Reconfiguration off-line off-line off-line off-line
Reentrance no no no yes
Response time unbounded unbounded unbounded bounded
Supported Data Transfers
Shared Variable:
Explicit Data Connector:
Shard Repositories:

no
yes
no

no
yes
no

yes
no
no

no

unknown
yes

Triggering capability yes yes no yes
*** Items in Italics are refinements of the pre-defined styles. Their default value would be unknown otherwise.

(or pieces of them) can be interpreted and used in
other views (how can information be exchanged).
Transformation can be categorized into basically
three dimensions: abstraction (or refinement of
views), consolidation (generic vs. specific) and
translation (conversion of information between
different types of views).

• Differentiation: Traverses the model to identify
(potential) mismatches within its elements. (Potential)
mismatches can automatically be identified through
either the use of rules and constraints or direct
(graph) comparison. Mismatch identification rules
can frequently be complemented by mismatch
resolution rules. Automated differentiation is strongly
dependent on transformation and mapping.

To date, we have applied our view integration
framework on various UML views such as class and
object diagrams, sequence diagrams, and state diagrams.
Our framework was also used in connection with
architectural models and styles (e.g. C2, Pipe-and-Filter,
Layered, etc.) as well as design patterns.

6. Identifying Mismatches

6.1. Component Feature Clashes
Currently, all the information available about our

system is rather high-level. At this point in the
development process we have no detailed architecture or
design information available, however, as we had shown
in Table 1, we have some clear understandings on what
the conceptual features of the components look like. We
also have the description of the interactions between the

components, as seen in Figure 1 (e.g. Order Framework
calls and shares repository with Inventory System). Using
that information we can now perform a preliminary
analysis on what potential mismatches (risks) may occur
when building that system. Table 2 summarizes the results
of that analysis. The table shows an excerpt of the
mismatches identified by the Architect’s Automated
Assistant (AAA) tool developed at USC [6].

Since the internal workings of our components are
largely unknown, many of these mismatches are
hypothesized. For instance, the mismatch that a node
resource is overused is based on the observation that more
than one component is using the same resource (a PC in
this case). Thus, in this context the list presented in Table
2 should be seen more as a risk list. Nevertheless, special
attention should be placed on that lists (as well as other
risk lists) from this moment on. In case of more severe
items, an initial exploration or even prototyping may be
necessary to ensure that the project is still doable. For
instance, the ninth mismatch sharing data with some
components that may later backtrack is a serious risk.
Here we need to explore whether the current database is
able to deal with issues such as distinguishing different
sources of input or supporting locking mechanisms.

6.2. Model Constraint and Rule Clashes
Model-based integration takes a very different

approach in identifying mismatches. Here, we try to
actually analyze the solution model. For instance, when
we take Figure 1, we can see that this figure imposes a
number of constraints on our system. For instance, it states
that only Inventory UI and Order Framework are allowed

Table 2: Excerpt of the List of Component Features Mismatches.

1. A layering constraint is violated. Bridging connector may ignore existing layering constraints. Violating subsystems: Order UI
and Order Framework (on control layer); Inventory UI and Inventory System (control layering unknown) (on control layer);
Order Framework and Inventory System (on control layer)

2. Different sets of recognized events are used by two subsystems that permit triggers. A trigger may not be recognized by
some subsystem that should. Violating subsystems: Order UI, Inventory UI, Inventory System

3. A (triggered) spawn is made into or out of a subsystem which originally forbade them. May cause synchronization problems,
as well as resources contention. Violating subsystems: Inventory UI and Inventory System (threads initiating unknown); Order
Framework and Inventory System

4. A remote connector is extended into or out of a non-distributed subsystem. The subsystem(s) originally non-distributed
cannot handle delays and/or errors occurred due to some distributed communication event. Violating subsystems: Inventory UI
and Inventory System

5. A node resource is overused. Resource overusage (memory and disk space). Violating subsystems: Inventory UI, Order
Framework, Order UI, Inventory System

6. (Triggered) Call/Spawn to a private method. Method not accessible to the caller. Violating subsystems: Inventory UI and
Inventory System (encapsulation unknown); Order Framework and Inventory System (encapsulation unknown)

7. More than one central control unit exists. All central control units assume they have absolute control on the execution
sequencing. Violating subsystems: Order UI, Inventory UI, Inventory System

8. (Triggered) Call to a non-reentrant component. Component may already be running. Violating subsystems: Order UI and
Inventory UI; Order UI and Order Framework

9. Sharing data with some component(s) that may later backtrack. Backtracking may cause undesired side effects on the overall
composed system state. Violating subsystems: Order Framework and Inventory System

10. Sharing or transferring data with differing underlying representations. Communications concerning the specific data may
not occur properly. Violating subsystems: Order Framework and Inventory System

to talk to Inventory System, or that both the Order
Framework and Inventory System may access the Order
Repository (database) via the Network. These constraints
can now be expressed more formally:
Design[Order Capture UI depends-on Order Framework]
Design[Order Processing UI depends-on Order Framework]
Design[Inventory UI depends-on Inventory System]
Design[Order Framework depends-on Inventory System]
Design[Order Framework depends-on Network]
Design[Inventory System depends-on Network]
Design[Network depends-on Order Repository]

Based on this list, we can use these constraints to
ensure consistency with lower-level design views (its
realization) as well as with corresponding higher level
views (e.g. architecture). Consider, for example, Table 3
which represents an architectural view of our proposed
system. We see that, although the Product Ordering
System consists of components of various styles, the
overall system should follow a layered style (the items in
parenthesis are subcomponents). Like before, we can
express constraints imposed by the architecture in a more
formal way:
Architecture[User Interface depends-on Order Framework]
Architecture[Order Framework depends-on Inventory Sys.]
Architecture[Inventory System depends-on Network]
Architecture[Network depends-on Order Repository]

The translations of the above architecture and design
views correspond to the Transformation activity we
presented in the previous section. The above steps, which
are rather trivial in this case, can easily be automated.
What is not trivial, is how to establish mappings. In this
example we need a mapping to describe how to relate
architectural elements to design elements. Since they are
not using the same names, mapping is more complex. It is
however out of the scope to show automated mapping
techniques here. If interested, please refer to [8] where
techniques are shown for automatically performing both
Mapping and Transformation on less trivial examples.
Thus, for simplicity, let us assume that the mapping was
done manually. This information can then again be
transformed and represented in a more formal way:
Design[Order Capture UI] maps-to Architecture[User Interface]
Design[Order Processing UI] maps-to Architecture[User Int.]
Design[Inventory UI] maps-to Architecture[User Interface]
Design[Order Framework] maps-to Architecture[Order Framew.]
Design[Inventory System] maps-to Architecture[Inventory Sys.]
Design[Network] maps-to Architecture[Network]

Design[Order Repository] maps-to Architecture[Order Rep.]

Having established a mapping as well as having
transformed both views into a common representation
model, identifying mismatches between them is
straightforward. The only item missing are mismatch rules
for the Differentiation activity:
For all [Architectural View Constraints]
 Exist [Design View Constraint]
 Otherwise Raise Completeness Mismatch
For all [Design View Constraints]
 Exist [Architectural View Constraint]
 Otherwise Raise Consistency Mismatch

The above notation is simplified for the benefit of
readability. The mismatch analysis is twofold: 1) for each
constraint imposed by the architecture, find at least one
instance in the design which reflects this constraint
(completeness issue) and 2) for each constraint in the
design, verify that it does not violate any architectural
constraint (inconsistency issue). For instance, in the first
case, the architecture imposes a dependency from User
Interface to Order Framework (see Table 3). The User
Interface is represented by two subcomponents: Order UI
and Inventory UI. Thus, we need to verify that there is at
least one dependency from either Order UI or Inventory
UI to the Order Framework. This dependency exists and,
thus, there is no mismatch. An example of the second case
is the dependency from Inventory UI to Inventory System
(in Figure 1) in the design view. Here we need to verify
whether this dependency violates any architectural
constraints. Since we cannot find a dependency from User
Interface (the correspondence of Inventory UI) to
Inventory System we have identified a layering mismatch.

The mismatch identified here corresponds to the
layering constraint violation indicated by AAA. The first
risk item in Table 2 indicated that the interaction of the
components may not conform to some layering constraint.
Through model-based integration we are actually able to
analyze this risk in more detail and we find that it was
indeed correct. This shows that risks identified through
AAA are a nice starting point for identifying model
mismatches later on. This also implies that many AAA
mismatches can be either confirmed or eliminated through
model-based integration.

The above example shows a rather trivial case.
However, the view integration framework presented in
this paper can handle more complex scenarios and at this
point incorporates a number of techniques for automated
mismatch identification. Note that none of the integration
techniques must yield correct results nor may it be
assumed that all possibilities are captured by them.
Human interaction will always be required. Nevertheless,
many pieces can be automated and this automation can
save substantial human effort.

It is however out of the scope of this work to go into
much more detail here. We will therefore only present one
example on how to automate class diagram abstraction

Table 3: Layered Architecture describes System
Product Ordering System

User Interface (Order UI, Inventory UI)
Order Framework (Customer, Payment, Order,

OrderLine, Reorder)
Inventory System
Network (LAN)

Order Repository

(transformation). Figure 3 shows two further refinements
of the Order Framework. Although, we make use of the
same names it is clear that Mapping alone is not sufficient
in identifying mismatches between both views. For
example, we see that Payment is part of Customer on the
upper half of Figure 3, however, that relationship is more
complex in the lower half. In order to verify that both
figures describe relationships the same way, we can use
the concept of Rose/Architect [11].

Rose/Architect (RA) identifies patterns of groups of
three classes and replaces them with simpler patterns
using transitive relationships. In class diagrams, a
transitive relationship describes the relationship between
classes that are not directly connected. A relationship
may, however, exist through other classes (e.g. helper
classes) which form a bridge between them (e.g. in case of
our example Payment and Customer are not directly
connected but a relationship is still given through the
helper classes Transaction and Account).

Figure 4 shows the Rose/Architect refinement steps for
the case of the Payment to Customer relationship of our
layer 2 design view (Figure 3). After applying two rules
(rules 4 and 17 respectively) we get a simplified pattern of
two classes and a dependency relationship between them.
If this is also done for the other classes we can
automatically generate new constraints. For instance, from

Layer 1 in Figure 3 we could
automatically derive the constraint that
Payment is part of Customer. After
abstracting Layer 2, we would derive
another constraint saying that Payment
is dependent on Customer. This
discrepancy is a strong indication of a
mismatch. Using Rose/Architect on
other parts of the layer 2 diagram would
also indicate a mismatch between Order
and OrderLine. This abstraction process
is fully tool supported.

As above examples have shown,
both integration approaches have
advantages and disadvantages, however,
together they complement each other
very well. Not all mismatches identified
through component-based integration
can be validated through model-based
integration. This suggests that other
view integration or risk handling
techniques are necessary to bridge the
gap.

Whereas component-based
integration depends strongly on existing
architectural features information, the
model-based integration approach is
able to also handle domain specific
constraints and rules on an ad-hoc

basis. This is possible because the latter uses constraints
and rules that can be both view specific (e.g. layer may
not be skipped) and domain specific (e.g. Payment is part
of Customer).

7. Related Work

The lack of component and model integration is not a
new discovery. Many model descriptions talk about the
need of keeping the views consistent. Sometimes, process
models provide additional guidelines on what tasks one
can do to improve the conceptual integrity of
architectures. For instance, a case study in using the
WinWin Spiral Model [12] suggests using Architecture
Review Boards [13] after the LCO (life-cycle objectives)
and LCA (life-cycle architecture) stages to verify and
validate the integrity of the analysis and design.

Sage and Lynch [14] stress “the important role that
architecture plays in system integration.” They present the
need for three major views: enterprise view, systems
engineering and management view, and technology
implementation view – and they stress to ensure
consistency among these views. Nuseibeh [15] wrote that
“inconsistency is an inevitable part of a complex,
incremental software development process” and that “the

Product
OrderCustomer

OrderLine
<<Queue>>

Order Framework Layer 1Payment

Order

Transaction Payment

Product

OrderLine

<<bind>>
<<bind>>

Queue

ProductQueue

Customer

Account

Order Framework Layer 2

Figure 3: Refinements of Order Framework Package (see Figure 1)

Transaction AccountPayment Customer

CustomerPayment Account

CustomerPayment

Use Rule 4

Use Rule 17

Figure 4: Payment to Customer Abstraction using Rose/Architect

incremental development of software systems involves the
detection and handling of inconsistencies.”

Perry and Wolf [16] realized the importance of
software architectures early on and they state as one of the
four major benefits of architectures that they are “the basis
for dependency and consistency analysis.” Shaw and
Garlan [17] describe architecture very provocatively as
being “a substantial folklore of system design, with little
consistency or precision.” They further state that
“software architecture found its roots in diagrams and
informal prose. Unfortunately, diagrams and descriptions
are highly ambiguous.”

These references, and many more, talk about the need
for (or lack of) integration. Nevertheless, they often do not
describe the involved activities in detail. On the other
hand, techniques that are sometimes suggested are often
only aimed at making people talk to each other. (e.g.
Architecture Review Board or Inspection). Although these
techniques may yield very effective results, the actual
activities of identifying and resolving defects are still done
manually.

8. Conclusion

This paper discussed two integration variations -
component-based integration and model-based
integration. We have shown the advantages and
disadvantages of each approach and illustrated their usage
on an example.

The component-based integration effort is more high-
level and may be used early on to identify potential
mismatches (risk mitigation). Identified mismatches may
be less trustworthy than the ones identified through
model-based analysis, however, the component-based
approach is able to deliver results with fairly little, even
incomplete, specifications. Model-based integration on the
other hand, works poorly in such an environment. Instead
it needs fairly detailed and sufficiently complete
specifications. However, it detects much more precise and
trustworthy mismatches and can handle large amounts of
redundant information. New information added to the
model may be validated right away and, in case of
mismatches, resolution options may often be provided as
well. It is these orthogonal characteristics that make both
approaches highly complementary. Both integration
approaches can be used (and should be used) together.

Currently, component-based integration has a strong
tool support (AAA tool). Model-based integration, has
some tool support, such as Rose/Architect for abstraction,
UML/Analyzer for transformation, and OCL checker for
constraint and rule verification. These tools are, however,
only weakly interconnected at this point and more tool
support is needed.

9. References
[1] B. Boehm and W.L. Scherlis, "Megaprogramming,"

Proceedings of the DARPA Soft ware Technology
Conference, April (available via USC Center for Software
Engineering, Los Angeles, CA, 90089-0781), 1992.

[2] D. Garlan, R. Allen, and J. Ockerbloom, “Architectural
Mismatch or Why it’s hard to build systems out of existing
parts,” IEEE Software, November, pp. 17-26, 1995.

[3] G. Booch, I. Jacobson, and J. Rumbaugh, “The Unified
Modeling Language for Object-Oriented Development,”
Documentation set, version 1.1, Rational Software
Corporation, 1998.

[4] C. Gacek, A. Abd-Allah, B. Clark, and B. Boehm, “On the
Definition of Software Architecture,” Proceedings of the
First International Workshop on Architectures for Software
Systems, D. Garlan (ed.), Seattle, WA, pp. 85-95, 1995.

[5] A. Egyed, "Using Patterns to Integrate UML Views,"
http://sunset.usc.edu/~aegyed/publications/Using_Patterns_
to_Integrate_UML_Views.pdf, 1999.

[6] C. Gacek, "Detecting Architectural Mismatches During
System Composition," Ph.D. Dissertation, Center for
Software Engineering, University of Southern California,
Los Angeles, CA 90089-0781, USA, 1998.

[7] A. Abd-Allah, "Composing Heterogeneous Software
Architectures," Ph.D. Dissertation, Center for Software
Engineering, University of Southern California, Los
Angeles, CA 90089-0781, USA, 1996.

[8] A. Egyed, “Integrating Architectural Views in UML,”
Qualifying Report, Technical Report, Center for Software
Engineering, University of Southern California, USC-CSE-
99-514, http://sunset.usc.edu/TechRpts/Papers/usccse99-
514/usccse99-514.pdf, 1999.

[9] M. Shaw and P. Clements, “A Field Guide to Boxology:
Pre-liminary Classification of Architectural Styles for
Software Systems,” to appear in Proceedings of COMPSAC
1997, Washington, DC, 1997.

[10] C. Gacek and B. Boehm, "Composing Components: How
Does One Detect Potential Architectural Mismatches?,"
Proceedings of the OMG-DARPA-MCC Workshop on
Compositional Software Architectures, January, 1998.

[11] A. Egyed and P. Kruchten, “Rose/Architect: a tool to
visualize software architecture”, Proceedings of the 32nd
Annual Hawaii Conference on Systems Sciences, 1999.

[12] B. Boehm, A. Egyed, J. Kwan, and R. Madachy, “Using the
WinWin Spiral Model: A Case Study,” IEEE Computer,
July, pp. 33-44, 1998.

[13] AT&T, “Best Current Practices: Software Architecture
Validation,” AT&T, Murray Hill, NJ, 1993.

[14] A.P. Sage and C.L. Lynch, “Systems Integration and
Architecting: An Overview of Principles, Practices, and
Perspectives,” Journal of Systems Engineering, Wiley
Publishers, Volume 1, Number 3, pp.176-226, 1998.

[15] B. Nuseibeh, “Computer-Aided Inconsistency Management
in Software Development,” Technical Report DoC 95/4,
Department of Computing, Imperial College, London SW7
2BZ, 1995.

[16] D. E. Perry and A. L. Wolf, “Foundations for the Study of
Software Architectures,” ACM SIGSOFT Software
Engineering Notes, October, 1992.

[17] M. Shaw and D. Garlan, “Software Architecture:
Perspectives on an Emerging Discipline,” Prentice Hall,
1996.

